Follow
Ryan Sweke
Ryan Sweke
Research Scientist at IBM
Verified email at ibm.com
Title
Cited by
Cited by
Year
Effect of data encoding on the expressive power of variational quantum-machine-learning models
M Schuld, R Sweke, JJ Meyer
Physical Review A 103 (3), 032430, 2021
5192021
Stochastic gradient descent for hybrid quantum-classical optimization
R Sweke, F Wilde, J Meyer, M Schuld, PK Fährmann, ...
Quantum 4, 314, 2020
2482020
Expressive power of tensor-network factorizations for probabilistic modeling
I Glasser, R Sweke, N Pancotti, J Eisert, I Cirac
Advances in Neural Information Processing Systems, 1496-1508, 2019
1302019
Reinforcement learning decoders for fault-tolerant quantum computation
R Sweke, MS Kesselring, EPL van Nieuwenburg, J Eisert
Machine Learning: Science and Technology 2 (2), 025005, 2020
1112020
Encoding-dependent generalization bounds for parametrized quantum circuits
MC Caro, E Gil-Fuster, JJ Meyer, J Eisert, R Sweke
Quantum 5, 582, 2021
982021
On the quantum versus classical learnability of discrete distributions
R Sweke, JP Seifert, D Hangleiter, J Eisert
Quantum 5, 417, 2021
972021
Universal simulation of Markovian open quantum systems
R Sweke, I Sinayskiy, D Bernard, F Petruccione
Physical Review A 91 (6), 062308, 2015
692015
Digital quantum simulation of many-body non-Markovian dynamics
R Sweke, M Sanz, I Sinayskiy, F Petruccione, E Solano
Physical Review A 94 (2), 022317, 2016
632016
Dissipative preparation of large states in optical cavities
R Sweke, I Sinayskiy, F Petruccione
Physical Review A—Atomic, Molecular, and Optical Physics 87 (4), 042323, 2013
442013
Simulation of single-qubit open quantum systems
R Sweke, I Sinayskiy, F Petruccione
Physical Review A 90 (2), 022331, 2014
422014
Tensor network approaches for learning non-linear dynamical laws
A Goeßmann, M Götte, I Roth, R Sweke, G Kutyniok, J Eisert
First Workshop on Quantum Tensor Networks in Machine Learning, 34th …, 2020
29*2020
Lieb-Robinson bounds for open quantum systems with long-ranged interactions
R Sweke, J Eisert, M Kastner
Journal of Physics A: Mathematical and Theoretical 52 (42), 2019
272019
One Gate Makes Distribution Learning Hard
M Hinsche, M Ioannou, A Nietner, J Haferkamp, Y Quek, D Hangleiter, ...
Physical Review Letters 130 (24), 240602, 2023
252023
Learnability of the output distributions of local quantum circuits
M Hinsche, M Ioannou, A Nietner, J Haferkamp, Y Quek, D Hangleiter, ...
arXiv preprint arXiv:2110.05517, 2021
192021
Scalably learning quantum many-body Hamiltonians from dynamical data
F Wilde, A Kshetrimayum, I Roth, D Hangleiter, R Sweke, J Eisert
arXiv preprint arXiv:2209.14328, 2022
182022
Superpolynomial quantum-classical separation for density modeling
N Pirnay, R Sweke, J Eisert, JP Seifert
Physical Review A 107 (4), 042416, 2023
172023
On the average-case complexity of learning output distributions of quantum circuits
A Nietner, M Ioannou, R Sweke, R Kueng, J Eisert, M Hinsche, ...
arXiv preprint arXiv:2305.05765, 2023
152023
Dissipative preparation of generalized Bell states
R Sweke, I Sinayskiy, F Petruccione
Journal of Physics B: Atomic, Molecular and Optical Physics 46 (10), 104004, 2013
142013
Transparent reporting of research-related greenhouse gas emissions through the scientific CO2nduct initiative
R Sweke, P Boes, N Ng, C Sparaciari, J Eisert, M Goihl
Communications Physics 5 (1), 150, 2022
102022
Potential and limitations of random fourier features for dequantizing quantum machine learning
R Sweke, E Recio, S Jerbi, E Gil-Fuster, B Fuller, J Eisert, JJ Meyer
arXiv preprint arXiv:2309.11647, 2023
82023
The system can't perform the operation now. Try again later.
Articles 1–20