Follow
Rodrigo Carvajal
Title
Cited by
Cited by
Year
EM-Based Maximum Likelihood Channel Estimation in Multicarrier Systems with Phase Distortion
R Carvajal, JC Aguero, BI Godoy, GC Goodwin
IEEE Transactions on Vehicular Technology 62 (1), 152-160, 2013
412013
Identification of sparse FIR systems using a general quantisation scheme
BI Godoy, JC Agüero, R Carvajal, GC Goodwin, JI Yuz
International Journal of Control 87 (4), 874-886, 2014
322014
A novel approach to model error modelling using the expectation-maximization algorithm
RA Delgado, GC Goodwin, R Carvajal, JC Agüero
2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 7327-7332, 2012
192012
Minimum variance control for mitigation of vibrations in adaptive optics systems
P Escárate, R Carvajal, L Close, J Males, K Morzinski, JC Agüero
Applied Optics 56 (19), 5388-5397, 2017
172017
EM-based identification of ARX systems having quantized output data
JC Agüero, K González, R Carvajal
IFAC-PapersOnLine 50 (1), 8367-8372, 2017
132017
A data augmentation approach for a class of statistical inference problems
R Carvajal, R Orellana, D Katselis, P Escárate, JC Agüero
PloS one 13 (12), e0208499, 2018
112018
EM-based sparse channel estimation in OFDM systems
R Carvajal, BI Godoy, JC Agüero, GC Goodwin
2012 IEEE 13th International Workshop on Signal Processing Advances in …, 2012
112012
Maximum Likelihood identification for Linear Dynamic Systems with finite Gaussian mixture noise distribution
G Bittner, R Orellana, R Carvajal, JC Agüero
2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering …, 2019
92019
Maximum likelihood infinite mixture distribution estimation utilizing finite Gaussian mixtures
R Orellana, R Carvajal, JC Agüero
IFAC-PapersOnLine 51 (15), 706-711, 2018
92018
On the uncertainty identification for linear dynamic systems using stochastic embedding approach with gaussian mixture models
R Orellana, R Carvajal, P Escárate, JC Agüero
Sensors 21 (11), 3837, 2021
82021
Maximum Likelihood identification of a continuous-time oscillator utilizing sampled data
K González, M Coronel, R Carvajal, P Escárate, JC Agüero
IFAC-PapersOnLine 51 (15), 712-717, 2018
82018
A method to deconvolve stellar rotational velocities-III. The probability distribution function via maximum likelihood utilizing finite distribution mixtures
R Orellana, P Escarate, M Cure, A Christen, R Carvajal, JC Agüero
Astronomy & Astrophysics 623, A138, 2019
72019
EM-based identification of static errors-in-variables systems utilizing Gaussian Mixture models
AL Cedeño, R Orellana, R Carvajal, JC Agüero
IFAC-PapersOnLine 53 (2), 863-868, 2020
62020
Empirical Bayes estimation utilizing finite Gaussian mixture models
R Orellana, R Carvajal, JC Agüero
2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering …, 2019
62019
Vibration model identification using the maximum likelihood method
P Escárate, M Coronel, K González, R Carvajal, JC Agüero
Adaptive Optics Systems VI 10703, 1505-1510, 2018
62018
A map approach for ℓq-norm regularized sparse parameter estimation using the EM algorithm
R Carvajal, JC Agüero, BI Godoy, D Katselis
2015 IEEE 25th International Workshop on Machine Learning for Signal …, 2015
62015
An identification method for Errors-in-Variables systems using incomplete data
R Carvajal, R Delgado, JC Agüero, GC Goodwin
IFAC Proceedings Volumes 45 (16), 1359-1364, 2012
62012
Maximum Likelihood estimation for non-minimum-phase noise transfer function with Gaussian mixture noise distribution
R Orellana, G Bittner, R Carvajal, JC Agüero
Automatica 135, 109937, 2022
52022
Model error modelling using a stochastic embedding approach with Gaussian mixture models for FIR systems
R Orellana, R Carvajal, JC Agüero, GC Goodwin
IFAC-PapersOnLine 53 (2), 845-850, 2020
52020
An optimization-based algorithm for model selection using an approximation of Akaike's information criterion
R Carvajal, G Urrutia, JC Agüero
2016 Australian Control Conference (AuCC), 217-220, 2016
52016
The system can't perform the operation now. Try again later.
Articles 1–20