Multi-Task Allocation in Mobile Crowd Sensing with Individual Task Quality Assurance Jiangtao Wang, Yasha Wang, Daqing Zhang, Feng Wang, Haoyi Xiong,Chao Chen ... IEEE Transactions on Mobile Computing 17 (9), 2101-2113, 2018 | 162 | 2018 |
Task Allocation in Mobile Crowd Sensing: State of the Art and Future Opportunities Jiangtao Wang, Leye Wang, Yasha Wang, Daqing Zhang, Linghe Kong IEEE Internet of Things Journal 5 (5), 3747-3757, 2018 | 141 | 2018 |
ConCare: Personalized Clinical Feature Embedding via Capturing the Healthcare Context L Ma, C Zhang, Y Wang, W Ruan, J Wang, W Tang, X Ma, X Gao, J Gao AAAI 2020, 2020 | 138 | 2020 |
HyTasker: Hybrid Task Allocation in Mobile Crowd Sensing Jiangtao Wang, Feng Wang, Yasha Wang, Leye Wang, zhaopeng Qiu, Daqing Zhang ... IEEE Transactions on Mobile Computing, 2020 | 128* | 2020 |
AdaCare: Explainable Clinical Health Status Representation Learning via Scale-Adaptive Feature Extraction and Recalibration L Ma, J Gao, Y Wang, C Zhang, J Wang, W Ruan, W Tang, X Gao, X Ma AAAI 2020, 2020 | 112 | 2020 |
Social-Network-Assisted Worker Recruitment in Mobile Crowd Sensing Jiangtao Wang, Feng Wang, Yasha Wang, Daqing Zhang, Leye Wang, Zhaopeng Qiu IEEE Transactions on Mobile Computing 18 (7), 1661 - 1673, 2019 | 106* | 2019 |
PSAllocator: Multi-task Allocation for Participatory Sensing with Sensing Capability Constraints Jiangtao Wang, Yasha Wang, Daqing Zhang, Feng Wang, Yuanduo He, Liantao Ma Proceedings of the 2017 ACM Conference on Computer Supported Cooperative …, 2017 | 91 | 2017 |
Camp: Co-attention memory networks for diagnosis prediction in healthcare J Gao, X Wang, Y Wang, Z Yang, J Gao, J Wang, W Tang, X Xie IEEE International Conference on Data Mining (ICDM 2019) 10361041, 2019 | 71 | 2019 |
Fine-grained Multitask Allocation for Participatory Sensing with a Shared Budget J Wang, Y Wang, D Zhang, L Wang, H Xiong, A Helal, Y He, F Wang IEEE Internet of Things Journal 3 (6), 1395-1405, 2016 | 69 | 2016 |
Green, Pervasive, and Cloud Computing–GPC 2020 Workshops: 15th International Conference, GPC 2020, Xi'an, China, November 13–15, 2020, Proceedings J Wang, L Chen, L Tang, Y Liang Springer Nature, 2020 | 67 | 2020 |
Energy Saving Techniques in Mobile Crowd Sensing: Current State and Future Opportunities Jiangtao Wang, Yasha Wang, Daqing Zhang, Sumi Helal IEEE Communications Magazine 56 (5), 164-169, 2018 | 62 | 2018 |
M3care: Learning with missing modalities in multimodal healthcare data C Zhang, X Chu, L Ma, Y Zhu, Y Wang, J Wang, J Zhao Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022 | 54 | 2022 |
GRASP: generic framework for health status representation learning based on incorporating knowledge from similar patients C Zhang, X Gao, L Ma, Y Wang, J Wang, W Tang Proceedings of the AAAI conference on artificial intelligence 35 (1), 715-723, 2021 | 48 | 2021 |
Learning-Assisted Optimization in Mobile Crowd Sensing: A Survey Jiangtao Wang, Yasha Wang, Daqing Zhang, Jorge Goncalves, Denzil Ferreira ... IEEE Transactions on Industrial Informatics 15 (1), 15-22, 2019 | 46* | 2019 |
MLRDA: A multi-task semi-supervised learning framework for drug-drug interaction prediction X Chu, Y Lin, Y Wang, L Wang, J Wang, J Gao Proceedings of the 28th international joint conference on artificial …, 2019 | 43 | 2019 |
Allocating Heterogeneous Tasks in Participatory Sensing with Diverse Participant-Side Factors J Wang, F Wang, Y Wang, D Zhang, BY Lim, L Wang IEEE Transactions on Mobile Computing 18 (9), 1979 - 1991, 2019 | 42 | 2019 |
A survey of task allocation: contrastive perspectives from wireless sensor networks and mobile crowdsensing W Guo, W Zhu, Z Yu, J Wang, B Guo IEEE Access 7, 78406-78420, 2019 | 42 | 2019 |
Real-time and generic queue time estimation based on mobile crowdsensing Jiangtao Wang, Yasha Wang, Daqing Zhang,Leye Wang,Chao Chen, Jae Woong Lee ... Frontiers of computer Science 11 (1), 49-60, 2017 | 42 | 2017 |
Crowd-Powered Sensing and Actuation in Smart Cities: Current Issues and Future Directions J Wang, Y Wang, D Zhang, Q Lv, C Chen IEEE Wireless Communications 26 (2), 86-92, 2019 | 37 | 2019 |
Interpretable machine learning for covid-19: An empirical study on severity prediction task H Wu, W Ruan, J Wang, D Zheng, B Liu, Y Geng, X Chai, J Chen, K Li, ... IEEE Transactions on Artificial Intelligence 4 (4), 764-777, 2021 | 36 | 2021 |