Sutharshan Rajasegarar
Sutharshan Rajasegarar
School of Information Technology, Deakin University
Verified email at unimelb.edu.au
TitleCited byYear
Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey
A Zoha, A Gluhak, M Imran, S Rajasegarar
Sensors 12 (12), 16838-16866, 2012
6172012
High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
SM Erfani, S Rajasegarar, S Karunasekera, C Leckie
Pattern Recognition 58, 121-134, 2016
2892016
Distributed anomaly detection in wireless sensor networks
S Rajasegarar, C Leckie, M Palaniswami, JC Bezdek
2006 10th IEEE Singapore international conference on communication systems, 1-5, 2006
2782006
Anomaly detection in wireless sensor networks
S Rajasegarar, C Leckie, M Palaniswami
IEEE Wireless Communications 15 (4), 34-40, 2008
2512008
Quarter sphere based distributed anomaly detection in wireless sensor networks
S Rajasegarar, C Leckie, M Palaniswami, JC Bezdek
2007 IEEE International Conference on Communications, 3864-3869, 2007
1902007
Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor networks
S Rajasegarar, C Leckie, JC Bezdek, M Palaniswami
IEEE Transactions on Information Forensics and Security 5 (3), 518-533, 2010
1302010
Parking availability prediction for sensor-enabled car parks in smart cities
Y Zheng, S Rajasegarar, C Leckie
2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor …, 2015
992015
Labelled data collection for anomaly detection in wireless sensor networks
S Suthaharan, M Alzahrani, S Rajasegarar, C Leckie, M Palaniswami
2010 sixth international conference on intelligent sensors, sensor networks …, 2010
802010
Elliptical anomalies in wireless sensor networks
S Rajasegarar, JC Bezdek, C Leckie, M Palaniswami
ACM Transactions on Sensor Networks (TOSN) 6 (1), 7, 2009
792009
Hyperspherical cluster based distributed anomaly detection in wireless sensor networks
S Rajasegarar, C Leckie, M Palaniswami
Journal of Parallel and Distributed Computing 74 (1), 1833-1847, 2014
742014
Clustering ellipses for anomaly detection
M Moshtaghi, TC Havens, JC Bezdek, L Park, C Leckie, S Rajasegarar, ...
Pattern Recognition 44 (1), 55-69, 2011
732011
Anomaly detection in wireless sensor networks in a non-stationary environment
C O'Reilly, A Gluhak, MA Imran, S Rajasegarar
IEEE Communications Surveys & Tutorials 16 (3), 1413-1432, 2014
652014
A Hybrid Approach to Clustering in Big Data
D Kumar, JC Bezdek, M Palaniswami, S Rajasegarar, C Leckie, ...
IEEE Transactions on Cybernetics, 2015
64*2015
Anomaly detection by clustering ellipsoids in wireless sensor networks
M Moshtaghi, S Rajasegarar, C Leckie, S Karunasekera
2009 International Conference on Intelligent Sensors, Sensor Networks and …, 2009
552009
Anomaly detection in environmental monitoring networks [application notes]
JC Bezdek, S Rajasegarar, M Moshtaghi, C Leckie, M Palaniswami, ...
IEEE Computational Intelligence Magazine 6 (2), 52-58, 2011
412011
Incremental elliptical boundary estimation for anomaly detection in wireless sensor networks
M Moshtaghi, C Leckie, S Karunasekera, JC Bezdek, S Rajasegarar, ...
2011 IEEE 11th international conference on data mining, 467-476, 2011
372011
Spatio-temporal modelling-based drift-aware wireless sensor networks
M Takruri, S Rajasegarar, S Challa, C Leckie, M Palaniswami
IET wireless sensor systems 1 (2), 110-122, 2011
322011
Smart car parking: temporal clustering and anomaly detection in urban car parking
Y Zheng, S Rajasegarar, C Leckie, M Palaniswami
2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor …, 2014
292014
An efficient hyperellipsoidal clustering algorithm for resource-constrained environments
M Moshtaghi, S Rajasegarar, C Leckie, S Karunasekera
Pattern Recognition 44 (9), 2197-2209, 2011
292011
A visual-numeric approach to clustering and anomaly detection for trajectory data
D Kumar, JC Bezdek, S Rajasegarar, C Leckie, M Palaniswami
The Visual Computer 33 (3), 265-281, 2017
282017
The system can't perform the operation now. Try again later.
Articles 1–20