Convolutional sequence to sequence learning J Gehring, M Auli, D Grangier, D Yarats, YN Dauphin International Conference on Machine Learning, 1243-1252, 2017 | 1969 | 2017 |
Language modeling with gated convolutional networks YN Dauphin, A Fan, M Auli, D Grangier International conference on machine learning, 933-941, 2017 | 985 | 2017 |
fairseq: A fast, extensible toolkit for sequence modeling M Ott, S Edunov, A Baevski, A Fan, S Gross, N Ng, D Grangier, M Auli arXiv preprint arXiv:1904.01038, 2019 | 585 | 2019 |
Label embedding trees for large multi-class tasks S Bengio, J Weston, D Grangier | 407 | 2010 |
A discriminative kernel-based approach to rank images from text queries D Grangier, S Bengio IEEE transactions on pattern analysis and machine intelligence 30 (8), 1371-1384, 2008 | 403 | 2008 |
Understanding back-translation at scale S Edunov, M Ott, M Auli, D Grangier arXiv preprint arXiv:1808.09381, 2018 | 385 | 2018 |
A convolutional encoder model for neural machine translation J Gehring, M Auli, D Grangier, YN Dauphin arXiv preprint arXiv:1611.02344, 2016 | 285 | 2016 |
Scaling neural machine translation M Ott, S Edunov, D Grangier, M Auli arXiv preprint arXiv:1806.00187, 2018 | 257 | 2018 |
Neural text generation from structured data with application to the biography domain R Lebret, D Grangier, M Auli arXiv preprint arXiv:1603.07771, 2016 | 219 | 2016 |
3d human pose estimation in video with temporal convolutions and semi-supervised training D Pavllo, C Feichtenhofer, D Grangier, M Auli Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019 | 187 | 2019 |
Efficient softmax approximation for GPUs A Joulin, M Cissé, D Grangier, H Jégou International Conference on Machine Learning, 1302-1310, 2017 | 176 | 2017 |
Discriminative keyword spotting J Keshet, D Grangier, S Bengio Speech Communication 51 (4), 317-329, 2009 | 158 | 2009 |
Strategies for training large vocabulary neural language models W Chen, D Grangier, M Auli arXiv preprint arXiv:1512.04906, 2015 | 135 | 2015 |
Learning to rank with (a lot of) word features B Bai, J Weston, D Grangier, R Collobert, K Sadamasa, Y Qi, O Chapelle, ... Information retrieval 13 (3), 291-314, 2010 | 129 | 2010 |
Controllable abstractive summarization A Fan, D Grangier, M Auli arXiv preprint arXiv:1711.05217, 2017 | 119 | 2017 |
Classical structured prediction losses for sequence to sequence learning S Edunov, M Ott, M Auli, D Grangier, MA Ranzato arXiv preprint arXiv:1711.04956, 2017 | 110 | 2017 |
Supervised semantic indexing B Bai, J Weston, D Grangier, R Collobert, K Sadamasa, Y Qi, O Chapelle, ... Proceedings of the 18th ACM conference on Information and knowledge …, 2009 | 108 | 2009 |
Deep convolutional networks for scene parsing D Grangier, L Bottou, R Collobert ICML 2009 Deep Learning Workshop 3 (6), 109, 2009 | 104 | 2009 |
Analyzing uncertainty in neural machine translation M Ott, M Auli, D Grangier, MA Ranzato International Conference on Machine Learning, 3956-3965, 2018 | 89 | 2018 |
Feature completion in computer-human interactive learning PY Simard, DM Chickering, DG Grangier, DX Charles, L Bottou, ... US Patent 9,355,088, 2016 | 85 | 2016 |