The path space of a directed graph SBG Webster Proc. Amer. Math. Soc. 142 (1), 213--225, 2014 | 61 | 2014 |
Remarks on some fundamental results about higher-rank graphs and their C*-algebras R Hazlewood, I Raeburn, A Sims, SBG Webster Proceedings of the Edinburgh Mathematical Society 56 (2), 575-597, 2013 | 48 | 2013 |
Von Neumann algebras of strongly connected higher-rank graphs M Laca, NS Larsen, S Neshveyev, A Sims, SBG Webster Mathematische Annalen 363 (1), 657-678, 2015 | 19 | 2015 |
The path space of a higher-rank graph SBG Webster Studia Math. 204, 155--185, 2011 | 17 | 2011 |
Fractal dual substitution tilings NP Frank, SBG Webster, MF Whittaker Journal of Fractal Geometry 3 (3), 265-317, 2016 | 7 | 2016 |
A direct approach to co-universal algebras associated to directed graphs A Sims, SBG Webster Bull. Malays. Math. Soc. 33, 211--220, 2010 | 7 | 2010 |
Directed graphs and k-graphs: topology of the path space and how it manifests in the associated C*-algebra SBG Webster University of Wollongong, 2010 | 5 | 2010 |
Computing the fundamental group of a higher-rank graph S Kang, D Pask, SBG Webster Proceedings of the Edinburgh Mathematical Society 64 (3), 650-661, 2021 | | 2021 |
Textile systems, coloured graphs and their applications to higher-rank graphs S Kang, D Pask, SBG Webster arXiv preprint arXiv:1310.7651, 2013 | | 2013 |
From k-coloured graphs to k-graphs S Webster Canadian Operator Symposium, COSY 2012, 2012 | | 2012 |