Hardy Kremer
Hardy Kremer
Deloitte Analytics Institute, Germany
Verified email at deloitte.de - Homepage
TitleCited byYear
MOA: Massive Online Analysis, a framework for stream classification and clustering.
A Bifet, G Holmes, B Pfahringer, P Kranen, H Kremer, T Jansen, T Seidl
Journal of Machine Learning Research (JMLR), 2010
1324*2010
An effective evaluation measure for clustering on evolving data streams
H Kremer, P Kranen, T Jansen, T Seidl, A Bifet, G Holmes, B Pfahringer
Proceedings of the 17th ACM SIGKDD international conference on Knowledge …, 2011
882011
Anticipatory DTW for Efficient Similarity Search in Time Series Databases
I Assent, M Wichterich, R Krieger, H Kremer, T Seidl
Proceedings of the VLDB Endowment 2 (1), 826-837, 2009
612009
MOA: a real-time analytics open source framework
A Bifet, G Holmes, B Pfahringer, J Read, P Kranen, H Kremer, T Jansen, ...
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2011
482011
Subspace Clustering for Uncertain Data
S Günnemann, H Kremer, T Seidl
Proceedings of the SDM Conference, 2010
332010
Clustering performance on evolving data streams: Assessing algorithms and evaluation measures within MOA
P Kranen, H Kremer, T Jansen, T Seidl, A Bifet, G Holmes, B Pfahringer
2010 IEEE International Conference on Data Mining Workshops, 1400-1403, 2010
242010
Stream data mining using the MOA framework
P Kranen, H Kremer, T Jansen, T Seidl, A Bifet, G Holmes, B Pfahringer, ...
International Conference on Database Systems for Advanced Applications, 309-313, 2012
212012
Tracing Evolving Subspace Clusters in Temporal Climate Data
S Günnemann, H Kremer, C Laufkötter, T Seidl
Data Mining and Knowledge Discovery Journal (DMKD) 24 (2), 387-410, 2012
212012
Subspace clustering for indexing high dimensional data: a main memory index based on local reductions and individual multi-representations
S Günnemann, H Kremer, D Lenhard, T Seidl
Proceedings of the 14th International Conference on Extending Database …, 2011
142011
Detecting climate change in multivariate time series data by novel clustering and cluster tracing techniques
H Kremer, S Gunnemann, T Seidl
2010 IEEE International Conference on Data Mining Workshops, 96-97, 2010
142010
Tracing evolving clusters by subspace and value similarity
S Günnemann, H Kremer, C Laufkötter, T Seidl
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 444-456, 2011
112011
Efficient Processing of Multiple DTW Queries in Time Series Databases
H Kremer, S Günnemann, AM Ivanescu, I Assent, T Seidl
Scientific and Statistical Database Management (SSDBM), 150-167, 2011
112011
Robust adaptable video copy detection
I Assent, H Kremer
International Symposium on Spatial and Temporal Databases, 380-385, 2009
112009
An extension of the PMML standard to subspace clustering models
S Günnemann, H Kremer, T Seidl
Proceedings of the 2011 workshop on Predictive markup language modeling, 48-53, 2011
92011
CoDA: Interactive cluster based concept discovery
S Günnemann, I Färber, H Kremer, T Seidl
Proceedings of the VLDB Endowment 3 (1-2), 1633-1636, 2010
82010
A subspace clustering extension for the KNIME data mining framework
S Günnemann, H Kremer, R Musiol, R Haag, T Seidl
2012 IEEE 12th International Conference on Data Mining Workshops, 886-889, 2012
62012
Mining of temporal coherent subspace clusters in multivariate time series databases
H Kremer, S Günnemann, A Held, T Seidl
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 444-455, 2012
52012
Effective and robust mining of temporal subspace clusters
H Kremer, S Günnemann, A Held, T Seidl
2012 IEEE 12th International Conference on Data Mining, 369-378, 2012
42012
MCExplorer: interactive exploration of multiple (Subspace) clustering solutions
S Gunnemann, H Kremer, I Farber, T Seidl
2010 IEEE International Conference on Data Mining Workshops, 1387-1390, 2010
42010
Speeding up complex video copy detection queries
I Assent, H Kremer, T Seidl
International Conference on Database Systems for Advanced Applications, 307-321, 2010
42010
The system can't perform the operation now. Try again later.
Articles 1–20