Traveling wave solutions of the Camassa–Holm equation J Lenells Journal of Differential Equations 217 (2), 393-430, 2005 | 259 | 2005 |

Traveling wave solutions of the Degasperis–Procesi equation J Lenells Journal of Mathematical Analysis and Applications 306 (1), 72-82, 2005 | 185 | 2005 |

Exact results for perturbative Chern-Simons theory with complex gauge group T Dimofte, S Gukov, J Lenells, D Zagier arXiv preprint arXiv:0903.2472, 2009 | 153 | 2009 |

Conservation laws of the Camassa–Holm equation J Lenells Journal of Physics A: Mathematical and General 38 (4), 869, 2005 | 135 | 2005 |

Generalized Hunter–Saxton equation and the geometry of the group of circle diffeomorphisms B Khesin, J Lenells, G Misiołek Mathematische Annalen 342 (3), 617-656, 2008 | 108 | 2008 |

The Hunter–Saxton equation describes the geodesic flow on a sphere J Lenells Journal of Geometry and Physics 57 (10), 2049-2064, 2007 | 102 | 2007 |

Inverse scattering transform for the Degasperis–Procesi equation A Constantin, RI Ivanov, J Lenells Nonlinearity 23 (10), 2559, 2010 | 100 | 2010 |

Stability of periodic peakons. J Lenells IMRN: International Mathematics Research Notices 2004 (10), 2004 | 90 | 2004 |

A variational approach to the stability of periodic peakons J Lenells Journal of Nonlinear Mathematical Physics 11 (2), 151-163, 2004 | 82 | 2004 |

The scattering approach for the Camassa–Holm equation J Lenells Journal of Nonlinear Mathematical Physics 9 (4), 389-393, 2002 | 81 | 2002 |

Integrable evolution equations on spaces of tensor densities and their peakon solutions J Lenells, G Misiołek, F Tiğlay Communications in Mathematical Physics 299 (1), 129-161, 2010 | 80 | 2010 |

The unified method: I. Nonlinearizable problems on the half-line AS Fokas, J Lenells Journal of Physics A: Mathematical and Theoretical 45 (19), 195201, 2012 | 78 | 2012 |

On a novel integrable generalization of the nonlinear Schrödinger equation J Lenells, AS Fokas Nonlinearity 22 (1), 11, 2008 | 78 | 2008 |

Numerical study of traveling-wave solutions for the Camassa–Holm equation H Kalisch, J Lenells Chaos, Solitons & Fractals 25 (2), 287-298, 2005 | 76 | 2005 |

An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitons J Lenells, AS Fokas Inverse problems 25 (11), 115006, 2009 | 72 | 2009 |

Exactly solvable model for nonlinear pulse propagation in optical fibers J Lenells Studies in Applied Mathematics 123 (2), 215-232, 2009 | 71 | 2009 |

Geometry of diffeomorphism groups, complete integrability and geometric statistics B Khesin, J Lenells, G Misiołek, SC Preston Geometric and Functional Analysis 23 (1), 334-366, 2013 | 69 | 2013 |

Initial-boundary value problems for integrable evolution equations with 3× 3 Lax pairs J Lenells Physica D: Nonlinear Phenomena 241 (8), 857-875, 2012 | 66 | 2012 |

Dressing for a novel integrable generalization of the nonlinear Schrödinger equation J Lenells Journal of nonlinear science 20 (6), 709-722, 2010 | 64 | 2010 |

The Hunter–Saxton equation: a geometric approach J Lenells SIAM journal on mathematical analysis 40 (1), 266-277, 2008 | 57 | 2008 |