Follow
Dimity Miller
Title
Cited by
Cited by
Year
Dropout sampling for robust object detection in open-set conditions
D Miller, L Nicholson, F Dayoub, N Sünderhauf
2018 IEEE International Conference on Robotics and Automation (ICRA), 3243-3249, 2018
2762018
Probabilistic object detection: Definition and evaluation
D Hall, F Dayoub, J Skinner, H Zhang, D Miller, P Corke, G Carneiro, ...
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2020
1502020
Class anchor clustering: A loss for distance-based open set recognition
D Miller, N Sunderhauf, M Milford, F Dayoub
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2021
1322021
Evaluating merging strategies for sampling-based uncertainty techniques in object detection
D Miller, F Dayoub, M Milford, N Sünderhauf
2019 international conference on robotics and automation (icra), 2348-2354, 2019
1262019
Uncertainty for identifying open-set errors in visual object detection
D Miller, N Sünderhauf, M Milford, F Dayoub
IEEE Robotics and Automation Letters 7 (1), 215-222, 2021
482021
Density-aware nerf ensembles: Quantifying predictive uncertainty in neural radiance fields
N Sünderhauf, J Abou-Chakra, D Miller
2023 IEEE International Conference on Robotics and Automation (ICRA), 9370-9376, 2023
352023
Benchmarking Sampling-based Probabilistic Object Detectors.
D Miller, N Sünderhauf, H Zhang, D Hall, F Dayoub
CVPR Workshops 3, 6, 2019
322019
SAFE: Sensitivity-aware features for out-of-distribution object detection
S Wilson, T Fischer, F Dayoub, D Miller, N Sünderhauf
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
212023
What’s in the black box? the false negative mechanisms inside object detectors
D Miller, P Moghadam, M Cox, M Wildie, R Jurdak
IEEE Robotics and Automation Letters 7 (3), 8510-8517, 2022
202022
Never mind the metrics-what about the uncertainty? Visualising binary confusion matrix metric distributions to put performance in perspective
D Lovell, D Miller, J Capra, AP Bradley
International Conference on Machine Learning, 22702-22757, 2023
9*2023
Why object detectors fail: Investigating the influence of the dataset
D Miller, G Goode, C Bennie, P Moghadam, R Jurdak
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
82022
Uncertainty-aware lidar place recognition in novel environments
K Mason, J Knights, M Ramezani, P Moghadam, D Miller
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2023
52023
Addressing the Challenges of Open-World Object Detection
D Pershouse, F Dayoub, D Miller, N Sünderhauf
arXiv preprint arXiv:2303.14930, 2023
42023
Epistemic uncertainty estimation for object detection in open-set conditions
D Miller
Queensland University of Technology, 2021
32021
Probabilistic object detection with an ensemble of experts
D Miller
Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020 …, 2020
32020
Open-Vocabulary Part-Based Grasping
T van Oort, D Miller, WN Browne, N Marticorena, J Haviland, ...
arXiv preprint arXiv:2406.05951, 2024
12024
Dropout variational inference improves object detection in open-set conditions
D Miller, L Nicholson, F Dayoub, N Sünderhauf
Bayesian Deep Learning Workshop at the Internation Conference on Neural …, 2017
12017
Electric Vehicle Next Charge Location Prediction
R Marlin, R Jurdak, A Abuadbba, S Ruj, D Miller
IEEE Transactions on Intelligent Transportation Systems, 2024
2024
Unlearning Backdoor Attacks through Gradient-Based Model Pruning
K Dunnett, R Arablouei, D Miller, V Dedeoglu, R Jurdak
arXiv preprint arXiv:2405.03918, 2024
2024
Open-Set Recognition in the Age of Vision-Language Models
D Miller, N Sünderhauf, A Kenna, K Mason
arXiv preprint arXiv:2403.16528, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–20