Follow
Arman Melkumyan
Arman Melkumyan
Senior Research Fellow and Orebody Knowledge Theme Leader, Rio Tinto Centre for Mine
Verified email at acfr.usyd.edu.au
Title
Cited by
Cited by
Year
A sparse covariance function for exact Gaussian process inference in large datasets.
A Melkumyan, F Ramos
IJCAI 9, 1936-1942, 2009
1642009
Multi-kernel Gaussian processes
A Melkumyan, F Ramos
IJCAI Proceedings-International Joint Conference on Artificial Intelligence …, 2011
1172011
Twelve shear surface waves guided by clamped/free boundaries in magneto-electro-elastic materials
A Melkumyan
International Journal of Solids and Structures 44 (10), 3594-3599, 2007
812007
Pretraining for hyperspectral convolutional neural network classification
L Windrim, A Melkumyan, RJ Murphy, A Chlingaryan, R Ramakrishnan
IEEE Transactions on Geoscience and Remote Sensing 56 (5), 2798-2810, 2018
732018
Influence of imperfect bonding on interface waves guided by piezoelectric/piezomagnetic composites
A Melkumyan, YW Mai
Philosophical Magazine 88 (23), 2965-2977, 2008
692008
Unsupervised feature-learning for hyperspectral data with autoencoders
L Windrim, R Ramakrishnan, A Melkumyan, RJ Murphy, A Chlingaryan
Remote Sensing 11 (7), 864, 2019
542019
A physics-based deep learning approach to shadow invariant representations of hyperspectral images
L Windrim, R Ramakrishnan, A Melkumyan, RJ Murphy
IEEE Transactions on Image Processing 27 (2), 665-677, 2017
502017
Evaluating the performance of a new classifier–the GP-OAD: A comparison with existing methods for classifying rock type and mineralogy from hyperspectral imagery
S Schneider, RJ Murphy, A Melkumyan
ISPRS journal of photogrammetry and remote sensing 98, 145-156, 2014
492014
A novel endmember bundle extraction and clustering approach for capturing spectral variability within endmember classes
T Uezato, RJ Murphy, A Melkumyan, A Chlingaryan
IEEE Transactions on Geoscience and Remote Sensing 54 (11), 6712-6731, 2016
462016
On the linear and nonlinear observability analysis of the SLAM problem
LDL Perera, A Melkumyan, E Nettleton
2009 IEEE International Conference on Mechatronics, 1-6, 2009
412009
A novel spectral unmixing method incorporating spectral variability within endmember classes
T Uezato, RJ Murphy, A Melkumyan, A Chlingaryan
IEEE Transactions on Geoscience and Remote Sensing 54 (5), 2812-2831, 2015
392015
Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits
K Silversides, A Melkumyan, D Wyman, P Hatherly
Computers & Geosciences 77, 118-125, 2015
392015
t-SNE based visualisation and clustering of geological domain
M Balamurali, A Melkumyan
Neural Information Processing: 23rd International Conference, ICONIP 2016 …, 2016
322016
Method and system of data modelling
A Melkumyan, FT Ramos
US Patent 8,849,622, 2014
312014
Incorporating spatial information and endmember variability into unmixing analyses to improve abundance estimates
T Uezato, RJ Murphy, A Melkumyan, A Chlingaryan
IEEE Transactions on Image Processing 25 (12), 5563-5575, 2016
252016
Hyperspectral CNN classification with limited training samples
L Windrim, R Ramakrishnan, A Melkumyan, R Murphy
arXiv preprint arXiv:1611.09007, 2016
242016
A comparison of t-SNE, SOM and SPADE for identifying material type domains in geological data
M Balamurali, KL Silversides, A Melkumyan
Computers & Geosciences 125, 78-89, 2019
212019
Gaussian processes with OAD covariance function for hyperspectral data classification
S Schneider, A Melkumyan, RJ Murphy, E Nettleton
2010 22nd IEEE International Conference on Tools with Artificial …, 2010
182010
A machine learning approach for material type logging and chemical assaying from autonomous measure-while-drilling (MWD) data
RN Khushaba, A Melkumyan, AJ Hill
Mathematical Geosciences 54 (2), 285-315, 2022
162022
Boundary identification and surface updates using mwd
KL Silversides, A Melkumyan
Mathematical Geosciences 53 (5), 1047-1071, 2021
162021
The system can't perform the operation now. Try again later.
Articles 1–20