Follow
Jungwook Choi
Title
Cited by
Cited by
Year
Pact: Parameterized clipping activation for quantized neural networks
J Choi, Z Wang, S Venkataramani, PIJ Chuang, V Srinivasan, ...
arXiv preprint arXiv:1805.06085, 2018
10832018
Training deep neural networks with 8-bit floating point numbers
N Wang, J Choi, D Brand, CY Chen, K Gopalakrishnan
Advances in neural information processing systems 31, 2018
6112018
Hybrid 8-bit floating point (HFP8) training and inference for deep neural networks
X Sun, J Choi, CY Chen, N Wang, S Venkataramani, VV Srinivasan, X Cui, ...
Advances in neural information processing systems 32, 2019
2402019
Accurate and Efficient 2-bit Quantized Neural Networks
J Choi, S Venkataramani, V Srinivasan, K Gopalakrishnan, Z Wang, ...
The Conference on Systems and Machine Learning (SysML), 2019
2082019
Adacomp: Adaptive residual gradient compression for data-parallel distributed training
CY Chen, J Choi, D Brand, A Agrawal, W Zhang, K Gopalakrishnan
Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018
2022018
A scalable multi-TeraOPS deep learning processor core for AI trainina and inference
B Fleischer, S Shukla, M Ziegler, J Silberman, J Oh, V Srinivasan, J Choi, ...
2018 IEEE symposium on VLSI circuits, 35-36, 2018
1542018
Robust machine learning systems: Challenges, current trends, perspectives, and the road ahead
M Shafique, M Naseer, T Theocharides, C Kyrkou, O Mutlu, L Orosa, ...
IEEE Design & Test 37 (2), 30-57, 2020
1432020
Approximate computing: Challenges and opportunities
A Agrawal, J Choi, K Gopalakrishnan, S Gupta, R Nair, J Oh, DA Prener, ...
2016 IEEE International Conference on Rebooting Computing (ICRC), 1-8, 2016
1242016
DLFloat: A 16-bit Floating Point Format Designed for Deep Learning Training and Inference
A Agrawal, SM Mueller, BM Fleischer, J Choi, N Wang, X Sun, ...
26th IEEE Symposium on Computer Arithmetic, 2019
982019
Bridging the accuracy gap for 2-bit quantized neural networks (qnn)
J Choi, PIJ Chuang, Z Wang, S Venkataramani, V Srinivasan, ...
arXiv preprint arXiv:1807.06964, 2018
882018
RaPiD: AI accelerator for ultra-low precision training and inference
S Venkataramani, V Srinivasan, W Wang, S Sen, J Zhang, A Agrawal, ...
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture …, 2021
872021
9.1 A 7nm 4-core AI chip with 25.6 TFLOPS hybrid FP8 training, 102.4 TOPS INT4 inference and workload-aware throttling
A Agrawal, SK Lee, J Silberman, M Ziegler, M Kang, S Venkataramani, ...
2021 IEEE International Solid-State Circuits Conference (ISSCC) 64, 144-146, 2021
852021
Compensated-DNN: Energy efficient low-precision deep neural networks by compensating quantization errors
S Jain, S Venkataramani, V Srinivasan, J Choi, P Chuang, L Chang
Proceedings of the 55th annual design automation conference, 1-6, 2018
802018
Exploiting approximate computing for deep learning acceleration
CY Chen, J Choi, K Gopalakrishnan, V Srinivasan, S Venkataramani
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), 821-826, 2018
792018
PROMISE: An end-to-end design of a programmable mixed-signal accelerator for machine-learning algorithms
P Srivastava, M Kang, SK Gonugondla, S Lim, J Choi, V Adve, NS Kim, ...
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture …, 2018
712018
Efficient AI system design with cross-layer approximate computing
S Venkataramani, X Sun, N Wang, CY Chen, J Choi, M Kang, A Agarwal, ...
Proceedings of the IEEE 108 (12), 2232-2250, 2020
572020
Understanding the role of self attention for efficient speech recognition
K Shim, J Choi, W Sung
International Conference on Learning Representations, 2022
522022
OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer neural network accelerator
J Park, H Yoon, D Ahn, J Choi, JJ Kim
Third Conference on Machine Learning and Systems, 2020
512020
A real-time FPGA-based 20 000-word speech recognizer with optimized DRAM access
YK Choi, K You, J Choi, W Sung
IEEE Transactions on Circuits and Systems I: Regular Papers 57 (8), 2119-2131, 2010
502010
Biscaled-dnn: Quantizing long-tailed datastructures with two scale factors for deep neural networks
S Jain, S Venkataramani, V Srinivasan, J Choi, K Gopalakrishnan, ...
Proceedings of the 56th Annual Design Automation Conference 2019, 1-6, 2019
462019
The system can't perform the operation now. Try again later.
Articles 1–20