A second-order method for the electromagnetic scattering from a large cavity Y Wang, K Du, W Sun Numerical Mathematics: Theory, Methods and Applications 1 (4), 357-382, 2008 | 30 | 2008 |

Preconditioning iterative algorithm for the electromagnetic scattering from a large cavity Y Wang, K Du, W Sun Numerical Linear Algebra with Applications 16 (5), 345-363, 2009 | 21 | 2009 |

Two transparent boundary conditions for the electromagnetic scattering from two-dimensional overfilled cavities K Du Journal of Computational Physics 230 (15), 5822-5835, 2011 | 19 | 2011 |

On well-conditioned spectral collocation and spectral methods by the integral reformulation K Du SIAM Journal on Scientific Computing 38 (5), A3247-A3263, 2016 | 17 | 2016 |

A composite preconditioner for the electromagnetic scattering from a large cavity K Du Journal of Computational Physics 230 (22), 8089-8108, 2011 | 14 | 2011 |

Matrix decomposition algorithms for the *C*^{0}-quadratic finite element Galerkin methodK Du, G Fairweather, QN Nguyen, W Sun BIT Numerical Mathematics 49 (3), 509-526, 2009 | 13 | 2009 |

Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss–Seidel algorithms K Du Numerical Linear Algebra with Applications 26 (3), e2233, 2019 | 10 | 2019 |

The iterative methods for computing the polar decomposition of rank-deficient matrix K Du Applied mathematics and computation 162 (1), 95-102, 2005 | 10 | 2005 |

A numerical study on the stability of a class of Helmholtz problems K Du, B Li, W Sun Journal of Computational Physics 287, 46-59, 2015 | 9 | 2015 |

A new theoretical estimate for the convergence rate of the maximal weighted residual Kaczmarz algorithm K Du, H Gao Numer. Math. Theor. Meth. Appl 12 (2), 627-639, 2019 | 7 | 2019 |

Arbitrary high-order C0 tensor product Galerkin finite element methods for the electromagnetic scattering from a large cavity K Du, W Sun, X Zhang Journal of Computational Physics 242, 181-195, 2013 | 7 | 2013 |

Numerical computation of electromagnetic scattering from large cavities K Du City University of Hong Kong, 2009 | 7 | 2009 |

GMRES with adaptively deflated restarting and its performance on an electromagnetic cavity problem K Du Applied numerical mathematics 61 (9), 977-988, 2011 | 6 | 2011 |

Numerical solution of electromagnetic scattering from a large partly covered cavity K Du, W Sun Journal of computational and applied mathematics 235 (13), 3791-3806, 2011 | 6 | 2011 |

Minimal residual methods for solving a class of R-linear systems of equations K Du, O Nevanlinna Helsinki University of Technology Institute of Mathematics Research Reports …, 2010 | 5 | 2010 |

Fast algorithms for the electromagnetic scattering from rectangular cavities Y Wang, K Du, W Sun Recent Advances in Computational Mathematics, Int. Press, Boston, MA, 13-38, 2008 | 5 | 2008 |

Any admissible harmonic Ritz value set is possible for GMRES K Du, JD Tebbens, G Meurant Verlag der Österreichischen Akademie der Wissenschaften, 2017 | 4 | 2017 |

A note on ℝ‐linear GMRES for solving a class of ℝ‐linear systems K Du, O Nevanlinna Numerical Linear Algebra with Applications 19 (5), 880-884, 2012 | 4 | 2012 |

Pseudoinverse-free randomized extended block Kaczmarz for solving least squares K Du, W Si, X Sun arXiv preprint arXiv:2001.04179, 2020 | 3 | 2020 |

A doubly stochastic block Gauss-Seidel algorithm for solving linear equations K Du, X Sun arXiv preprint arXiv:1912.13291, 2019 | 3 | 2019 |