A quantitative improvement for Roth's theorem on arithmetic progressions TF Bloom Journal of the London Mathematical Society 93 (3), 643-663, 2016 | 126 | 2016 |
Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions TF Bloom, O Sisask arXiv preprint arXiv:2007.03528, 2020 | 52 | 2020 |
Translation invariant equations and the method of Sanders TF Bloom Bulletin of the London Mathematical Society 44 (5), 1050-1067, 2012 | 29 | 2012 |
A new upper bound for sets with no square differences TF Bloom, J Maynard Compositio Mathematica 158 (8), 1777-1798, 2022 | 21 | 2022 |
An improvement to the Kelley-Meka bounds on three-term arithmetic progressions TF Bloom, O Sisask arXiv preprint arXiv:2309.02353, 2023 | 20 | 2023 |
Additive energy and the metric Poissonian property TF Bloom, S Chow, A Gafni, A Walker Mathematika 64 (3), 679-700, 2018 | 20 | 2018 |
Logarithmic bounds for Roth's theorem via almost-periodicity TF Bloom, O Sisask arXiv preprint arXiv:1810.12791, 2018 | 17 | 2018 |
The Kelley–Meka bounds for sets free of three-term arithmetic progressions TF Bloom, O Sisask Essential Number Theory 2 (1), 15-44, 2023 | 14 | 2023 |
On a density conjecture about unit fractions TF Bloom arXiv preprint arXiv:2112.03726, 2021 | 11 | 2021 |
A Sum–Product Theorem in Function Fields TF Bloom, TGF Jones International Mathematics Research Notices 2014 (19), 5249-5263, 2014 | 10 | 2014 |
Egyptian fractions TF Bloom, C Elsholtz arXiv preprint arXiv:2210.04496, 2022 | 9 | 2022 |
Ramsey equivalence of and TF Bloom, A Liebenau arXiv preprint arXiv:1508.03866, 2015 | 9 | 2015 |
Breaking the logarithmic barrier in Roth’s theorem on arithmetic progressions. Preprint (2020) TF Bloom, O Sisask arXiv preprint arXiv:2007.03528, 0 | 7 | |
Unit fractions TF Bloom, B Mehta Accessed 2023-09-21. June 12, 2022. URL: https://b-mehta. github. io/unit …, 2022 | 5 | 2022 |
Quantitative inverse theory of Gowers uniformity norms TF Bloom arXiv preprint arXiv:2009.01774, 2020 | 4 | 2020 |
Odd moments and adding fractions TF Bloom, V Kuperberg arXiv preprint arXiv:2312.09021, 2023 | 2 | 2023 |
The Bombieri-Pila determinant method TF Bloom, JD Lichtman arXiv preprint arXiv:2312.12890, 2023 | 1 | 2023 |
Quantitative results in arithmetic combinatorics TF Bloom University of Bristol, 2014 | 1 | 2014 |
On a density conjecture about unit fractions (with an appendix by Thomas F. Bloom and Bhavik Mehta) TF Bloom Journal of the European Mathematical Society, 2024 | | 2024 |
Unit fractions with shifted prime denominators TF Bloom Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1-11, 2024 | | 2024 |