Yanjun Qi
Yanjun Qi
Associate Professor @CS, University of Virginia/ SCS PhD @ Carnegie Mellon Univ./ DATA Scholar@ NIH
Verified email at virginia.edu - Homepage
Cited by
Cited by
Opportunities and obstacles for deep learning in biology and medicine
T Ching, DS Himmelstein, BK Beaulieu-Jones, AA Kalinin, BT Do, ...
Journal of The Royal Society Interface 15 (141), 20170387, 2018
Feature squeezing: Detecting adversarial examples in deep neural networks
W Xu, D Evans, Y Qi
Network and Distributed Systems Security Symposium (NDSS) 2018, 2018
Evaluation of different biological data and computational classification methods for use in protein interaction prediction
Y Qi, Z Bar‐Joseph, J Klein‐Seetharaman
Proteins: Structure, Function, and Bioinformatics 63 (3), 490-500, 2006
Automatically evading classifiers
W Xu, Y Qi, D Evans
Proceedings of the 2016 network and distributed systems symposium 10, 2016
Random forest for bioinformatics
Y Qi
Ensemble machine learning, 307-323, 2012
A critical assessment of Mus musculus gene function prediction using integrated genomic evidence
L Peña-Castillo, M Tasan, CL Myers, H Lee, T Joshi, C Zhang, Y Guan, ...
Genome biology 9 (1), 1-19, 2008
Systems and methods for semi-supervised relationship extraction
Y Qi, B Bai, X Ning, P Kuksa
US Patent 8,874,432, 2014
Random forest similarity for protein-protein interaction prediction from multiple sources
Y Qi, J Klein-Seetharaman, Z Bar-Joseph
Biocomputing 2005, 531-542, 2005
Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers
J Gao, J Lanchantin, ML Soffa, Y Qi
1st DEEP LEARNING AND SECURITY WORKSHOP (DLS18), arXiv preprint arXiv:1801.04354, 2018
DeepChrome: deep-learning for predicting gene expression from histone modifications
R Singh, J Lanchantin, G Robins, Y Qi
Bioinformatics 32 (17), i639-i648, 2016
Sentiment classification based on supervised latent n-gram analysis
D Bespalov, B Bai, Y Qi, A Shokoufandeh
Proceedings of the 20th ACM international conference on Information and …, 2011
Prediction of interactions between HIV-1 and human proteins by information integration
O Tastan, Y Qi, JG Carbonell, J Klein-Seetharaman
Biocomputing 2009, 516-527, 2009
Cas9-chromatin binding information enables more accurate CRISPR off-target prediction
MA R Singh, C Kuscu, A Quinlan, Y Qi
Nucleic acids research, 2015
Protein complex identification by supervised graph local clustering
Y Qi, F Balem, C Faloutsos, J Klein-Seetharaman, Z Bar-Joseph
Bioinformatics 24 (13), i250-i268, 2008
Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins
Y Qi, O Tastan, JG Carbonell, J Klein-Seetharaman, J Weston
Bioinformatics 26 (18), i645-i652, 2010
Learning to rank with (a lot of) word features
B Bai, J Weston, D Grangier, R Collobert, K Sadamasa, Y Qi, O Chapelle, ...
Information retrieval 13 (3), 291-314, 2010
Recurrent chimeric fusion RNAs in non-cancer tissues and cells
M Babiceanu, F Qin, Z Xie, Y Jia, K Lopez, N Janus, L Facemire, S Kumar, ...
Nucleic acids research 44 (6), 2859-2872, 2016
Supervised semantic indexing
B Bai, J Weston, D Grangier, R Collobert, K Sadamasa, Y Qi, O Chapelle, ...
Proceedings of the 18th ACM conference on Information and knowledge …, 2009
Deep motif dashboard: Visualizing and understanding genomic sequences using deep neural networks
J Lanchantin, R Singh, B Wang, Y Qi
Pacific Symposium on Biocomputing 2017, 254-265, 2017
Supervised classification for video shot segmentation
Y Qi, A Hauptmann, T Liu
2003 International Conference on Multimedia and Expo. ICME'03. Proceedings …, 2003
The system can't perform the operation now. Try again later.
Articles 1–20