Deblurring images: matrices, spectra, and filtering PC Hansen, JG Nagy, DP O'leary Society for Industrial and Applied Mathematics, 2006 | 1009 | 2006 |

Restoring images degraded by spatially variant blur JG Nagy, DP O'Leary SIAM Journal on Scientific Computing 19 (4), 1063-1082, 1998 | 285 | 1998 |

Iterative methods for image deblurring: a Matlab object-oriented approach JG Nagy, K Palmer, L Perrone Numerical Algorithms 36 (1), 73-93, 2004 | 270 | 2004 |

A weighted GCV method for Lanczos hybrid regularization J Chung, JG Nagy, DP O’leary Electronic Transactions on Numerical Analysis 28 (149-167), 2008, 2008 | 200 | 2008 |

Preconditioned iterative regularization for ill—posed problems M Hanke, J Nagy, R Plemmons Numerical linear algebra, 141-164, 2011 | 174 | 2011 |

Enforcing nonnegativity in image reconstruction algorithms JG Nagy, Z Strakos Mathematical Modeling, Estimation, and Imaging 4121, 182-190, 2000 | 151 | 2000 |

Iterative image restoration using approximate inverse preconditioning JG Nagy, RJ Plemmons, TC Torgersen IEEE Transactions on Image Processing 5 (7), 1151-1162, 1996 | 135 | 1996 |

Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques M Hanke, JG Nagy Inverse problems 12 (2), 157, 1996 | 135 | 1996 |

FFT-based preconditioners for Toeplitz-block least squares problems RH Chan, JG Nagy, RJ Plemmons SIAM journal on numerical analysis 30 (6), 1740-1768, 1993 | 134 | 1993 |

Kronecker product and SVD approximations in image restoration J Kamm, JG Nagy Linear Algebra and its Applications 284 (1-3), 177-192, 1998 | 114 | 1998 |

Numerical methods for coupled super-resolution J Chung, E Haber, J Nagy Inverse Problems 22 (4), 1261, 2006 | 112 | 2006 |

Quasi-Newton approach to nonnegative image restorations M Hanke, JG Nagy, C Vogel Linear Algebra and its applications 316 (1-3), 223-236, 2000 | 91 | 2000 |

IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems S Gazzola, PC Hansen, JG Nagy Numerical Algorithms 81 (3), 773-811, 2019 | 90 | 2019 |

Optimal Kronecker product approximation of block Toeplitz matrices J Kamm, JG Nagy SIAM Journal on Matrix Analysis and Applications 22 (1), 155-172, 2000 | 88 | 2000 |

Circulant preconditioned Toeplitz least squares iterations RH Chan, JG Nagy, RJ Plemmons SIAM Journal on Matrix Analysis and Applications 15 (1), 80-97, 1994 | 88 | 1994 |

Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging JM Bardsley, JG Nagy SIAM journal on matrix analysis and applications 27 (4), 1184-1197, 2006 | 83 | 2006 |

Fast iterative image restoration with a spatially varying PSF JG Nagy, DP O'leary Advanced Signal Processing: Algorithms, Architectures, and Implementations …, 1997 | 78 | 1997 |

A computational method for the restoration of images with an unknown, spatially-varying blur J Bardsley, S Jefferies, J Nagy, R Plemmons Optics express 14 (5), 1767-1782, 2006 | 75 | 2006 |

Steepest descent, CG, and iterative regularization of ill-posed problems JG Nagy, KM Palmer BIT Numerical Mathematics 43 (5), 1003-1017, 2003 | 69 | 2003 |

Kronecker product approximations forimage restoration with reflexive boundary conditions JG Nagy, MK Ng, L Perrone SIAM Journal on Matrix Analysis and Applications 25 (3), 829-841, 2003 | 65 | 2003 |