Follow
James A Nichols
Title
Cited by
Cited by
Year
Machine learning: applications of artificial intelligence to imaging and diagnosis
JA Nichols, HW Herbert Chan, MAB Baker
Biophysical reviews 11, 111-118, 2019
4142019
Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
IG Graham, FY Kuo, JA Nichols, R Scheichl, C Schwab, IH Sloan
Numerische Mathematik 131, 329-368, 2015
1812015
Fractional order compartment models
CN Angstmann, AM Erickson, BI Henry, AV McGann, JM Murray, ...
SIAM Journal on Applied Mathematics 77 (2), 430-446, 2017
622017
Fast CBC construction of randomly shifted lattice rules achieving O (n− 1+ δ) convergence for unbounded integrands over Rs in weighted spaces with POD weights
JA Nichols, FY Kuo
Journal of Complexity 30 (4), 444-468, 2014
58*2014
Greedy algorithms for optimal measurements selection in state estimation using reduced models
P Binev, A Cohen, O Mula, J Nichols
SIAM/ASA Journal on Uncertainty Quantification 6 (3), 1101-1126, 2018
502018
Reduced basis greedy selection using random training sets
A Cohen, W Dahmen, R DeVore, J Nichols
ESAIM: Mathematical Modelling and Numerical Analysis 54 (5), 1509-1524, 2020
442020
Optimal reduced model algorithms for data-based state estimation
A Cohen, W Dahmen, R DeVore, J Fadili, O Mula, J Nichols
SIAM Journal on Numerical Analysis 58 (6), 3355-3381, 2020
382020
From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations
CN Angstmann, IC Donnelly, BI Henry, BA Jacobs, TAM Langlands, ...
Journal of Computational Physics 307, 508-534, 2016
352016
Nonlinear reduced models for state and parameter estimation
A Cohen, W Dahmen, O Mula, J Nichols
SIAM/ASA Journal on Uncertainty Quantification 10 (1), 227-267, 2022
252022
A general framework for fractional order compartment models
CN Angstmann, AM Erickson, BI Henry, AV McGann, JM Murray, ...
SIAM Review 63 (2), 375-392, 2021
252021
A discrete time random walk model for anomalous diffusion
CN Angstmann, IC Donnelly, BI Henry, JA Nichols
Journal of Computational Physics 293, 53-69, 2015
232015
A quantitative comparison of anti-HIV gene therapy delivered to hematopoietic stem cells versus CD4+ T cells
B Savkovic, J Nichols, D Birkett, T Applegate, S Ledger, G Symonds, ...
PLoS computational biology 10 (6), e1003681, 2014
172014
Topological deep learning: a review of an emerging paradigm
A Zia, A Khamis, J Nichols, UB Tayab, Z Hayder, V Rolland, E Stone, ...
Artificial Intelligence Review 57 (4), 77, 2024
152024
HW, & Baker, MAB (2019)
JA Nichols, H Chan
Machine learning: Applications of artificial intelligence to imaging and …, 0
11
Subdiffusive discrete time random walks via Monte Carlo and subordination
JA Nichols, BI Henry, CN Angstmann
Journal of Computational Physics 372, 373-384, 2018
92018
Leveraging ancestral sequence reconstruction for protein representation learning
DM Matthews, MA Spence, AC Mater, J Nichols, SB Pulsford, M Sandhu, ...
bioRxiv, 2023.12. 20.572683, 2023
22023
Coarse reduced model selection for nonlinear state estimation
J Nichols
ANZIAM Journal 62, C192-C207, 2020
12020
Quasi-Monte Carlo methods with applications to partial differential equations with random coefficients
J Nichols
UNSW Sydney, 2014
12014
Greedy measurement selection for state estimation
J Nichols, A Cohen, P Binev, O Mula
ScienceOpen Posters, 2018
2018
Application of QMC methods to PDEs with random coefficients: a survey of analysis and implementation
F Kuo, J Dick, T Le Gia, J Nichols, I Sloan, I Graham, R Scheichl, ...
2016
The system can't perform the operation now. Try again later.
Articles 1–20