Numerical solution of the space fractional Fokker–Planck equation F Liu, V Anh, I Turner Journal of Computational and Applied Mathematics 166 (1), 209-219, 2004 | 724 | 2004 |

Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation F Liu, P Zhuang, V Anh, I Turner, K Burrage Applied Mathematics and Computation 191 (1), 12-20, 2007 | 521 | 2007 |

Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term P Zhuang, F Liu, V Anh, I Turner SIAM Journal on Numerical Analysis 47 (3), 1760-1781, 2009 | 419 | 2009 |

New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation P Zhuang, F Liu, V Anh, I Turner SIAM Journal on Numerical Analysis 46 (2), 1079-1095, 2008 | 377 | 2008 |

A Fourier method for the fractional diffusion equation describing sub-diffusion CM Chen, F Liu, I Turner, V Anh Journal of Computational Physics 227 (2), 886-897, 2007 | 368 | 2007 |

Time fractional advection-dispersion equation F Liu, VV Anh, I Turner, P Zhuang Journal of Applied Mathematics and Computing 13 (1-2), 233, 2003 | 267 | 2003 |

Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation R Lin, F Liu, V Anh, I Turner Applied Mathematics and computation 212 (2), 435-445, 2009 | 256 | 2009 |

Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation CM Chen, F Liu, V Anh, I Turner SIAM Journal on Scientific Computing 32 (4), 1740-1760, 2010 | 224 | 2010 |

A Crank--Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation F Zeng, F Liu, C Li, K Burrage, I Turner, V Anh SIAM Journal on Numerical Analysis 52 (6), 2599-2622, 2014 | 222 | 2014 |

Spectral analysis of fractional kinetic equations with random data VV Anh, NN Leonenko Journal of Statistical Physics 104 (5-6), 1349-1387, 2001 | 214 | 2001 |

Numerical approximation of a fractional-in-space diffusion equation, I M Ilic, F Liu, I Turner, V Anh Fractional Calculus and Applied Analysis 8 (3), 323-341, 2005 | 209 | 2005 |

Finite difference approximations for the fractional Fokker–Planck equation S Chen, F Liu, P Zhuang, V Anh Applied Mathematical Modelling 33 (1), 256-273, 2009 | 206 | 2009 |

Analytical solution for the time-fractional telegraph equation by the method of separating variables J Chen, F Liu, V Anh Journal of Mathematical Analysis and Applications 338 (2), 1364-1377, 2008 | 192 | 2008 |

Galerkin finite element approximation of symmetric space-fractional partial differential equations H Zhang, F Liu, V Anh Applied Mathematics and Computation 217 (6), 2534-2545, 2010 | 179 | 2010 |

Numerical approximation of a fractional-in-space diffusion equation (II)–with nonhomogeneous boundary conditions M Ilic, F Liu, I Turner, V Anh Fractional Calculus and applied analysis 9 (4), 333-349, 2006 | 170 | 2006 |

A new fractional finite volume method for solving the fractional diffusion equation F Liu, P Zhuang, I Turner, K Burrage, V Anh Applied Mathematical Modelling 38 (15-16), 3871-3878, 2014 | 151 | 2014 |

Measure representation and multifractal analysis of complete genomes ZG Yu, V Anh, KS Lau Physical Review E 64 (3), 031903, 2001 | 141 | 2001 |

Approximation of the Lévy–Feller advection–dispersion process by random walk and finite difference method Q Liu, F Liu, I Turner, V Anh Journal of Computational Physics 222 (1), 57-70, 2007 | 140 | 2007 |

A novel high order space-time spectral method for the time fractional Fokker--Planck equation M Zheng, F Liu, I Turner, V Anh SIAM Journal on Scientific Computing 37 (2), A701-A724, 2015 | 139 | 2015 |

Chaos game representation of protein sequences based on the detailed HP model and their multifractal and correlation analyses ZG Yu, V Anh, KS Lau Journal of theoretical biology 226 (3), 341-348, 2004 | 138 | 2004 |