Digital nets and sequences: discrepancy theory and quasi–Monte Carlo integration J Dick, F Pillichshammer Cambridge University Press, 2010 | 637 | 2010 |

High-dimensional integration: The quasi-Monte Carlo way^{*}^{†}J Dick, FY Kuo, IH Sloan Acta Numerica 22, 133-288, 2013 | 390 | 2013 |

Walsh spaces containing smooth functions and quasi–Monte Carlo rules of arbitrary high order J Dick SIAM Journal on Numerical Analysis 46 (3), 1519-1553, 2008 | 125 | 2008 |

Good lattice rules in weighted Korobov spaces with general weights J Dick, IH Sloan, X Wang, H Woźniakowski Numerische Mathematik 103 (1), 63-97, 2006 | 101 | 2006 |

Liberating the weights J Dick, IH Sloan, X Wang, H Woźniakowski Journal of Complexity 20 (5), 593-623, 2004 | 96 | 2004 |

Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces J Dick, F Pillichshammer Journal of Complexity 21 (2), 149-195, 2005 | 94 | 2005 |

Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions J Dick SIAM Journal on Numerical Analysis 45 (5), 2141-2176, 2007 | 82 | 2007 |

On the convergence rate of the component-by-component construction of good lattice rules J Dick Journal of Complexity 20 (4), 493-522, 2004 | 78 | 2004 |

Higher order QMC Petrov--Galerkin discretization for affine parametric operator equations with random field inputs J Dick, FY Kuo, QT Le Gia, D Nuyens, C Schwab SIAM Journal on Numerical Analysis 52 (6), 2676-2702, 2014 | 68 | 2014 |

Construction algorithms for polynomial lattice rules for multivariate integration J Dick, F Kuo, F Pillichshammer, I Sloan Mathematics of computation 74 (252), 1895-1921, 2005 | 66 | 2005 |

The construction of good extensible rank-1 lattices J Dick, F Pillichshammer, B Waterhouse Mathematics of Computation 77 (264), 2345-2373, 2008 | 53 | 2008 |

Lattice rules for nonperiodic smooth integrands J Dick, D Nuyens, F Pillichshammer Numerische Mathematik 126 (2), 259-291, 2014 | 43 | 2014 |

Exponential convergence and tractability of multivariate integration for Korobov spaces J Dick, G Larcher, F Pillichshammer, H Woźniakowski Mathematics of Computation 80 (274), 905-930, 2011 | 43 | 2011 |

The decay of the Walsh coefficients of smooth functions J Dick Bulletin of the Australian Mathematical Society 80 (3), 430-453, 2009 | 40 | 2009 |

Functions of bounded variation, signed measures, and a general Koksma-Hlawka inequality C Aistleitner, J Dick arXiv preprint arXiv:1406.0230, 2014 | 39 | 2014 |

On the mean square weighted ℒ₂ discrepancy of randomized digital (t, m, s)-nets over ℤ₂ J Dick, F Pillichshammer Acta Arithmetica 117 (4), 371-403, 2005 | 37 | 2005 |

Construction of interlaced scrambled polynomial lattice rules of arbitrary high order T Goda, J Dick Foundations of Computational Mathematics 15 (5), 1245-1278, 2015 | 36 | 2015 |

Discrepancy theory and quasi-Monte Carlo integration J Dick, F Pillichshammer A panorama of discrepancy theory, 539-619, 2014 | 35 | 2014 |

Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules J Dick, F Pillichshammer Journal of Complexity 23 (4-6), 436-453, 2007 | 35 | 2007 |

Multilevel Higher Order QMC Petrov--Galerkin Discretization for Affine Parametric Operator Equations J Dick, FY Kuo, QT Le Gia, C Schwab SIAM Journal on Numerical Analysis 54 (4), 2541-2568, 2016 | 34 | 2016 |